|
INTERVIEW QUESTIONS
GENERAL
LOGICAL & APTITUDE
DETAILS
Question: The legendary king Midas possessed a huge amount of gold. He hid this treasure carefully: in a building consisting of a number of rooms. In each room there were a number of boxes; this number was equal to the number of rooms in the building. Each box contained a number of golden coins that equaled the number of boxes per room. When the king died, one box was given to the royal barber. The remainder of the coins had to be divided fairly between his six sons. Is a fair division possible in all situations?
Answer: A fair division of Midas' coins is indeed possible. Let the number of rooms be N. This means that per room there are N boxes with N coins each. In total there are N×N×N = N3 coins. One box with N coins goes to the barber. For the six brothers, N3 - N coins remain. We can write this as: N(N2 - l), or: N(N - 1)(N + l). This last expression is divisible by 6 in all cases, since a number is divisible by 6 when it is both divisible by 3 and even. This is indeed the case here: whatever N may be, the expression N(N - 1)(N + l) always contains three successive numbers. One of those is always divisible by 3, and at least one of the others is even. This even holds when N=1; in that case all the brothers get nothing, which is also a fair division! .
|
|
|
Category |
Logical & Aptitude Interview Questions & Answers -
Exam Mode /
Learning Mode
|
Rating |
(0.2) By 9253 users |
Added on |
7/7/2010 |
Views |
75161 |
Rate it! |
|
|
Question:
The legendary king Midas possessed a huge amount of gold. He hid this treasure carefully: in a building consisting of a number of rooms. In each room there were a number of boxes; this number was equal to the number of rooms in the building. Each box contained a number of golden coins that equaled the number of boxes per room. When the king died, one box was given to the royal barber. The remainder of the coins had to be divided fairly between his six sons. Is a fair division possible in all situations?
Answer:
A fair division of Midas' coins is indeed possible. Let the number of rooms be N. This means that per room there are N boxes with N coins each. In total there are N×N×N = N3 coins. One box with N coins goes to the barber. For the six brothers, N3 - N coins remain. We can write this as: N(N2 - l), or: N(N - 1)(N + l). This last expression is divisible by 6 in all cases, since a number is divisible by 6 when it is both divisible by 3 and even. This is indeed the case here: whatever N may be, the expression N(N - 1)(N + l) always contains three successive numbers. One of those is always divisible by 3, and at least one of the others is even. This even holds when N=1; in that case all the brothers get nothing, which is also a fair division! . Source: CoolInterview.com
1. At 6’o a clock ticks 6 times. The time between first and last ticks is 30 seconds. How long does it tick at 12’o clock
Answer: 60 Seconds
2. A hotel has 10 storey. Which floor is above the floor below the floor, below the floor above the floor, below the floor above the fifth.
Answer: 5th floor.
3. Two trains starting at same time, one from Bangalore to Mysore and other in opposite direction arrive at their destination 1 hr and 4 hours respectively after passing each other. How much faster is one train from other?
Answer: 4 times faster than the other train.
4. A man collects cigarette stubs and makes one full cigarette with every 8 stubs. If he gets 64 stubs how many full cigarettes can he smoke?
Answer: 9 cigarettes.
5. There is one room with 3-bulbs inside and corresponding switches are outside the room. You make any combination of three switches and enter room only once. How do you find out the respective switches for these three bulbs.
Answer: I will switch on the first switch and wait for 5 minutes and then i will turn it off. Then switch on the second switch and then go to the room. If the bulb is on then its the second switch. If the bulb is off and cool then its the third switch. If the bulb is off and hot (as had switched on the first switch for 5 min) then its the first switch Source: CoolInterview.com
Answered by: Kiran Kurhade | Date: 4/1/2008
| Contact Kiran Kurhade
If you have the better answer, then send it to us. We will display your answer after the approval.
Rules to Post Answers in CoolInterview.com:-
- There should not be any Spelling Mistakes.
- There should not be any Gramatical Errors.
- Answers must not contain any bad words.
- Answers should not be the repeat of same answer, already approved.
- Answer should be complete in itself.
|
|
Related Questions |
View Answer |
|
This is a most unusual paragraph. How quickly can you find out what is so unusual about it? It looks so ordinary that you would think that nothing is wrong with it at all, and, in fact, nothing is. But it is unusual. Why? If you study it and think about it, you may find out, but I am not going to assist you in any way. You must do it without any hints or coaching. No doubt, if you work at it for a bit, it will dawn on you. Who knows? Go to work and try your skill. Good luck! What is unusual about the above paragraph?
|
View Answer
|
|
Here is a sequence of numbers: 1 11 21 1211 111221 It seems to be a strange sequence, but yet there is a system behind it... What is the next term in this sequence?
|
View Answer
|
|
Below are a number of statements: 1. Precisely one of these statements is untrue. 2. Precisely two of these statements are untrue. 3. Precisely three of these statements are untrue. 4. Precisely four of these statements are untrue. 5. Precisely five of these statements are untrue. 6. Precisely six of these statements are untrue. 7. Precisely seven of these statements are untrue. 8. Precisely eight of these statements are untrue. 9. Precisely nine of these statements are untrue. 10. Precisely ten of these statements are untrue. Which of these statements is true?
|
View Answer
|
|
Three salesmen went into a hotel to rent a room. The manager stated that he had only one room left, but all three could use it for $30.00 for the night. The three salesmen gave him $10.00 each and went up to their room. Later, the manager decided that he had charged the salesmen too much so he called the bellhop over, gave him five one-dollar bills, and said: 'Take this $5.00 up to the salesmen and tell them I had charged them too much for the room'. On the way up, the bellhop knew that he could not divide the five one-dollar bills equally so he put two of the one-dollar bills in his pocket and returned one one-dollar bill to each of the salesmen. This means that each salesman paid $9.00 for the room. The bellhop kept $2.00. Three times nine is 27 plus two is 29....... What happened to the extra dollar?
|
View Answer
|
|
A man decides to buy a nice horse. He pays $60 for it, and he is very content with the strong animal. After a year, the value of the horse has increased to $70 and he decides to sell the horse. But already a few days later he regrets his decision to sell the beautiful horse, and he buys it again. Unfortunately he has to pay $80 to get it back, so he loses $10. After another year of owning the horse, he finally decides to sell the horse for $90. What is the overall profit the man makes?
|
View Answer
|
|
Joyce has bought ten trees for her garden. She wants to plant these trees in five rows, with four trees in each row. The Question :How must Joyce plant the trees?
|
View Answer
|
|
Using the ciphers 1 up to 9, three numbers (of three ciphers each) can be formed, such that the second number is twice the first number, and the third number is three times the first number. Which are these three numbers?
|
View Answer
|
|
The poor have it, the rich want it, but if you eat it you will die. What is this?
|
View Answer
|
|
In the Tour de France, what is the position of a rider, after he passes the second placed rider?
|
View Answer
|
|
In Miss Miranda's class are eleven children. Miss Miranda has a bowl with eleven apples. Miss Miranda wants to divide the eleven apples among the children of her class, in such a way that each child in the end has an apple and one apple remains in the bowl. Can you help Miss Miranda?
|
View Answer
|
|
Hans is standing behind Gerrie and at the same time Gerrie is standing behind Hans. How is this possible
|
View Answer
|
|
Of all the numbers whose literal representations in capital letters consists only of straight line segments (for example, FIVE), only one number has a value equal to the number of segments used to write it. Which number has this property?
|
View Answer
|
|
A snail is at the bottom of a 20 meters deep pit. Every day the snail climbs 5 meters upwards, but at night it slides 4 meters back downwards. How many days does it take before the snail reaches the top of the pit?
|
View Answer
|
|
You walk upwards on an escalator, with a speed of 1 step per second. After 50 steps you are at the end. You turn around and run downwards with a speed of 5 steps per second. After 125 steps you are back at the beginning of the escalator. How many steps do you need if the escalator stands still?
|
View Answer
|
|
A number is called a palindrome when it is equal to the number you get when all its digits are reversed. For example, 2772 is a palindrome. We discovered a curious thing. We took the number 461, reversed the digits, giving the number 164, and calculated the sum of these two numbers: 461 164 + ------- 625 We repeated the process of reversing the digits and calculating the sum two more times: 625 526 + ------- 1151 1511 + ------- 2662 To our surprise, the result 2662 was a palindrome. We decided to see if this was a pure coincidence or not. So we took another 3-digit number, reversed it, which gave a larger number, and added the two. The result was not a palindrome. We repeated the process, which resulted in another 3-digit number which was still not a palindrome. We had to repeat the process twice more to finally arrive at a 4-digit number which was a palindrome. What was the 3-digit number we started with the second time?
|
View Answer
|
|
A number is called a palindrome when it is equal to the number you get when all its digits are reversed. For example, 2772 is a palindrome. We discovered a curious thing. We took the number 461, reversed the digits, giving the number 164, and calculated the sum of these two numbers: 461 164 + ------- 625 We repeated the process of reversing the digits and calculating the sum two more times: 625 526 + ------- 1151 1511 + ------- 2662 To our surprise, the result 2662 was a palindrome. We decided to see if this was a pure coincidence or not. So we took another 3-digit number, reversed it, which gave a larger number, and added the two. The result was not a palindrome. We repeated the process, which resulted in another 3-digit number which was still not a palindrome. We had to repeat the process twice more to finally arrive at a 4-digit number which was a palindrome. What was the 3-digit number we started with the second time?
|
View Answer
|
|
On a sunny morning, a greengrocer places 200 kilograms of cucumbers in cases in front of his shop. At that moment, the cucumbers are 99% water. In the afternoon, it turns out that it is the hottest day of the year, and as a result, the cucumbers dry out a little bit. At the end of the day, the greengrocer has not sold a single cucumber, and the cucumbers are only 98% water. How many kilograms of cucumbers has the greengrocer left at the end of the day?
|
View Answer
|
|
Greengrocer C. Carrot wants to expose his oranges neatly for sale. Doing this he discovers that one orange is left over when he places them in groups of three. The same happens if he tries to place them in groups of 5, 7, or 9 oranges. Only when he makes groups of 11 oranges, it fits exactly. How many oranges does the greengrocer have at least?
|
View Answer
|
|
A cyclist drove one kilometer, with the wind in his back, in three minutes and drove the same way back, against the wind in four minutes. If we assume that the cyclist always puts constant force on the pedals, how much time would it take him to drive one kilometer without wind?
|
View Answer
|
|
Two friends, Alex and Bob, go to a bookshop, together with their sons Peter and Tim. All four of them buy some books; each book costs a whole amount in shillings. When they leave the bookshop, they notice that both fathers have spent 21 shillings more than their respective sons. Moreover, each of them paid per book the same amount of shillings as books that he bought. The difference between the number of books of Alex and Peter is five. Who is the father of Tim?
|
View Answer
|
Please Note: We keep on updating better answers to this site. In case you are looking for Jobs, Pls Click Here Vyoms.com - Best Freshers & Experienced Jobs Website.
View All Logical & Aptitude Interview Questions & Answers - Exam Mode /
Learning Mode
|